

V Semester B.A./B.Sc. Examination, Nov./Dec. 2015 (Semester Scheme) (Prior to 2013-14) (OS) MATHEMATICS – V

Time: 3 Hours

Max. Marks: 90

Instruction: Answer all questions.

I. Answer any fifteen of the following:

(15×2=30)

- In a ring (R, +, *), prove that a · 0 = 0 · a = 0, where 0 being the additive identity.
- 2) Define a commutative ring and an integral domain.
- 3) Define a subring of a ring and give an example.
- 4) Prove that the intersection of two subrings of a ring is appring.
- 5) Let $(z, +, \cdot)$ be the ring of integers, define $f: z \to z$ by $f(x) = x + x \in z$. Show that f is homomorphism.
- 6) Define kernel of homomorphism.
- 7) If $\vec{r} = ti t^2j + sint k$, find $\frac{d\vec{r}}{dt}$ and $\frac{d^2\vec{r}}{dt^2}$ at t = 0.
- 8) Define:
 - i) Curvature
 - ii) Torsion at any point for a space curve.
- 9) Find the unit tangent vector t for the curve $x = 3 \cos t$, $y = 3 \sin t$, z = 4t.
- 10) The Cartesian coordinates of a point are $(2, 2\sqrt{3}, -3)$. Find the corresponding cylindrical coordinates.
- 11) Find the normal vector to the cylinder $x^2 + y^2 = 16$ at $(2\sqrt{3}, 2, 0)$.
- 12) If $\phi(x, y, z) = x^4 + y^4 + z^4$, find $\nabla \phi$ at (-1, 2, 3).
- 13) Find the constant 'a' so that $\overrightarrow{F} = (x + 3y)i + (y 2z)j + (x az)k$ is solenoidal.

- 14) If ϕ and Ψ are two scalar point functions then prove that $\nabla(\Psi \phi) = \phi \nabla \Psi + \Psi \nabla \phi$.
- 15) Find the divergence of $f = 3x^2i + 5xy^2j + xyz^3k$ at the point (1, 2, 3)
- 16) Prove that curl (grad ϕ) = 0.
- 17) Write Legendre's equation.
- 18) Show that $P_n(1) = 1$.
- 19) Show that $J_0^1(x) = -J_1(x)$.
- 20) Show that $\frac{d}{dx}[x J_1(x)] = xJ_0(x)$.

II. Answer any four of the following:

- Prove that every field is an integral domain. Justify your answer that converse is not true.
- 2) S.T. the set $S = \left\{ \begin{pmatrix} a & o \\ b & c \end{pmatrix} \middle/ a, b, c \in z \right\}$ is a subring of the ring $M_2(z) \ \forall \ 2 \times 2$ matrices over the set of integers.
- 3) Find all the principal ideals of the ring $R = \{0, 1, 2, 3, 4, 5\}$ w.r.t. '+6' and 'X6'.
- 4) If f: R → R' be a homomorphism of R into R'. Then prove that f is one-one if and only if Ker f = {0}.
- 5) Let R be the ring of all matrices of 2×2 over z and $S = \left\{ \begin{pmatrix} a & o \\ b & o \end{pmatrix} \middle/ a, b \in z \right\}$. Show that S is a left ideal in R but not a right ideal.
- 6) Let I be an ideal of a ring R, then prove that:
 - i) R is commutative $\Rightarrow R_1$ is commutative
 - ii) R is a ring with unity $\Rightarrow R/$ is a ring with unity.

III. Answer any three of the following:

(3×5=15)

- 1) Derive Seret-Frenet of formulae for a space curve.
- 2) Find the curvature and torsion for the curve x = u, $y = u^2$, $z = u^3$ at t = 1.
- 3) Find the unit normal and the equation of the tangent plane to the surface $z = x^2 + y^2$, at (1, -1, 2).
- 4) Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 3$ at (2, -1, 2).
- 5) Express the vector $\vec{f} = 3yi + x^2j z^2k$ in cylindrical coordinates.

IV. Answer any three of the following:

(3×5=15)

- 1) If $\phi(x, y, z) = x^2 y^2 z^2$ and $\overrightarrow{F} = 2xi + yj + 3zk$ find $\overrightarrow{F} \cdot \nabla \phi$ and $\overrightarrow{F} \times \nabla \phi$.
- 2) Show that $\overrightarrow{F} = (6xy + z^3)i + (3x^2 z)j + (3xz^2 y)$ irrotational. Find a scalar field ϕ such that $f = \nabla \phi$.
- 3) Prove that curl $(\phi f) = \phi$ curl $f + \text{grad} \phi \times f$.
- 4) Show that div $(r^n \ \vec{r}) = (n+3) r^n$ where $r = |\vec{r}|$.
- 5) Prove that cylindrical coordinate system is orthogonal.

V. Answer any two of the following:

(2×5=10)

- 1) Derive Rodrigue's formula $P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} [(x^2 1)^n]$ for the Legendre polynomial.
- 2) Show that $nP_n(x) = xP_n^1(x) P_{n-1}^1(x)$.
- 3) Show that $\int_{-1}^{1} x P_n(x) P_{n-1}(x) dx = \frac{2n}{4n^2 1}$

$$J_{n}(x) = \frac{x}{2n} [J_{n-1}(x) + J_{n+1}(x)].$$

4) Find the solution of $xy'' + 2y' + \frac{1}{2}xy = 0$ interms of Bessel's functions.